Products of vector valued Eisenstein series
نویسندگان
چکیده
منابع مشابه
Operator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملoperator valued series and vector valued multiplier spaces
let $x,y$ be normed spaces with $l(x,y)$ the space of continuous linear operators from $x$ into $y$. if ${t_{j}}$ is a sequence in $l(x,y)$, the (bounded) multiplier space for the series $sum t_{j}$ is defined to be [ m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}% t_{j}x_{j}text{ }converges} ] and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...
متن کاملEisenstein Series*
group GC defined over Q whose connected component G 0 Q has no rational character. It is also necessary to suppose that the centralizer of a maximal Q split torus of G0C meets every component of GC. The reduction theory of Borel applies, with trivial modifications, to G; it will be convenient to assume that Γ has a fundamental set with only one cusp. Fix a minimal parabolic subgroup P 0 C defin...
متن کاملMean Convergence of Vector–valued Walsh Series
Given any Banach space X, let L X 2 denote the Banach space of all measurable functions f : [0, 1] → X for which f 2 := 1 0 f (t) 2 dt
متن کاملThe Distribution of Vector-valued Rademacher Series
Let X = P εnxn be a Rademacher series with vector-valued coefficients. We obtain an approximate formula for the distribution of the random variable ||X|| in terms of its mean and a certain quantity derived from the K-functional of interpolation theory. Several applications of the formula are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum Mathematicum
سال: 2017
ISSN: 0933-7741,1435-5337
DOI: 10.1515/forum-2014-0198